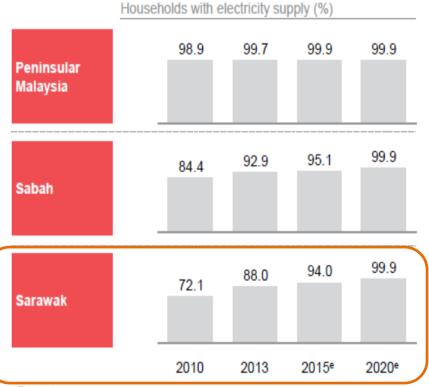


Third JASTIP Symposium ASEAN-Japan STI Collaboration for SDGs February 5, 2017, Bangkok, Thailand

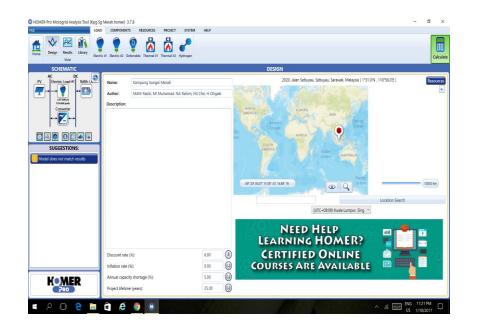
Optimal Design of Green Energy Systems Based on Photovoltaic Source for Rural Electrification in Malaysia

Dr. Mohd Amran Mohd Radzi (amranmr@upm.edu.my) Department of Electrical and Electronic Engineering Universiti Putra Malaysia Serdang, Malaysia



Rural Electrification

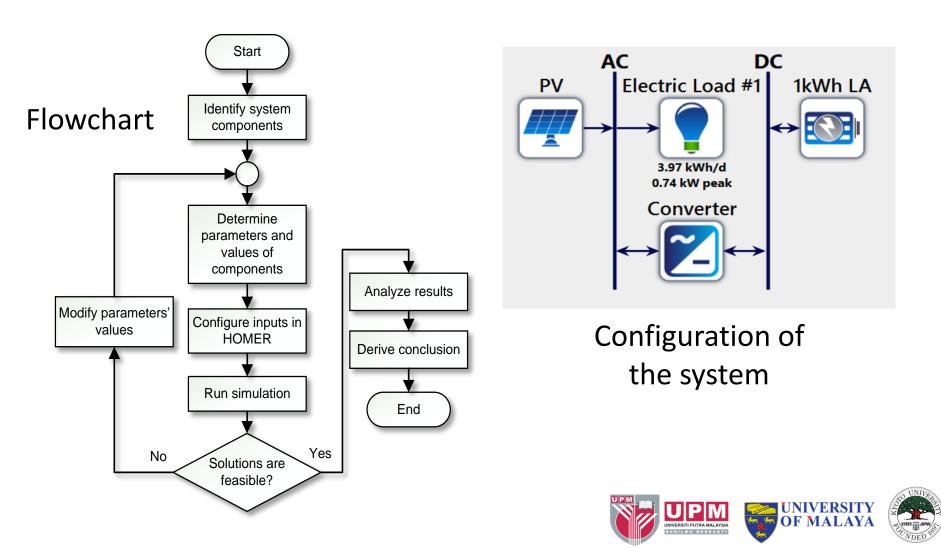
* Estimated Source: Ministry of Rural and Regional Development There are various existing works on installing renewable systems, potential of evaluating them for further improvement can be carried out, especially with appropriate design.



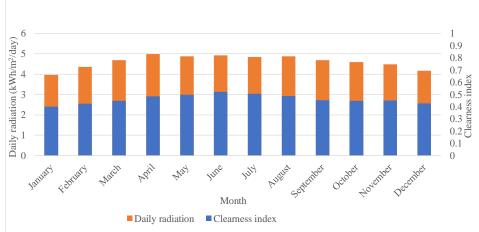
Objective

To develop optimal design of fully green energy systems based on photovoltaic (PV) source with reasonable cost and appropriate dispatch energy strategy for rural electrification in two selected areas in Sarawak

Studied Areas



Assessment



Loads and Solar Data

House	Electrical appliance	Power (W) per hour	Average usage (Hour/ day)	Usage for 1 unit per day (Wh)	Unit	Total usage for 1 house per day (W/h)	
1	Compact fluorescent light bulb 1	26	5	130	1	130	
	Compact fluorescent light bulb 2	20	5	100	1	100	
	Compact fluorescent light bulb 3	18	5	90	7	630	
	CRT television	72	5	360	1	360	;
	Table fan	48	6	288	2	576	Dailoundining and and and and
	Ceiling fan	60	6	360	1	360	
2	Compact fluorescent light bulb	18	5	90	8	720	
	LCD television	50	5	250	1	250	
	Table fan	48	6	288	1	288	
3	Compact fluorescent light bulb	18	5	90	3	270	
	Table fan	48	6	288	1	288	
					TOTAL	3972	

For Kampung Sungai Merah, surveyed by UMPEDAC

Annual average irradiance is 4.62 kWh/m²/day

Outcomes of Optimal Design

Component/Parameter	_	Value			
	Kampung Opar	Kampung Sungai Merah			
Architecture/PV (kW)	13.3	2.39			
Architecture/1kWh LA	36	7			
Architecture/Converter (kW)	3.22	0.67			
Architecture/Dispatch	Cycle charging	Cycle charging			
Cost/Cost of energy (COE) (USD)	0.652	0.624			
Cost/Net present cost (NPC) (USD)	38,052	6,789			
Cost/Operating cost (USD)	1,660	268.22			
Cost/Initial capital (USD)	25,029	4,686			
System/Renewable fraction (%)	100	100			
PV/Capital Cost (USD)	13,264	2,385			
PV/Production (kWh)	17,858	3,210			
1kWh LA/Autonomy (hour)	24	25			
1kWh LA/Annual Throughput (kWh)	4,526	851			
Converter/Rectifier Mean Output (kW)	0.6	0.1			
Converter/Inverter Mean Output (kW)	0.4	0.08			

The work has successfully been carried out to design and simulate the renewable energy systems. The results conclude the optimized results with the lowest NPC.

Appropriate design with comprehensive analysis through powerful software tool like HOMER should provide better future prospect in ensuring **sustainable renewable systems**. The supplied electricity later will provide better life for rural people.

The future work is to consider multi sources for more sustainable renewable systems.

