Research Activities on Disaster Management in USM

Prof. Dr. Ismail Abustan
School of Civil Engineering

The 2nd Symposium on JASTIP Disaster Prevention International Cooperation Research (JASTIP-WP4 Symposium)
March 22-23, 2017, Kihada Hall, Obaku Plaza, Uji Campus, Kyoto University, Japan
PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA
NATIONAL FLOOD FORECASTING AND DISSEMINATION PROGRAM

Sazali Osman
BAHAGIAN PENGURUSAN SUMBER AIR DAN HIDROLOGI
Water Resources Management and Hydrology Section
KOMPONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

Ramalan Hujan
Cerapan hujan, sejatan, kelempapan tanah
Cerapan aras air dan kadar alir

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras

KOMPONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras

KOMONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras

KOMPONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras

KOMPONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras

KOMPONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras

KOMPONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras

KOMPONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras

KOMPONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras

KOMPONEN UTAMA PROGRAM RAMALAN DAN AMARAN BANJIR NEGARA (PRAB)

PENGESANAN

Communication & Big Data Analysis

RAMALAN

Air Pasang / Surut
Profil Sungai
Topografi (DEM) & gunatanah

Maklumat Real Time
Validasi dan Simpan Data

PUSAT DATA RAMALAN

Communication

AMARAN DAN HEBAHAN

Ketepatan 0.5 meter

Ramalan 2 Hari

AMARAN 7 Hari

Peta

Ramalan Aras
8.0 INOVASI SISTEM PENGHANTARAN DATA

Sistem Penghantaran Data Bagi Sistem PRABF1

SOURCE
- SG. KELANTAN HYDROLOGICAL STATION
- SG. TERENGGANU HYDROLOGICAL STATION
- SG. PAHANG HYDROLOGICAL STATION
- JABATAN METEOROLOGI MALAYSIA (JMM) SERVER
- JMM NUMERICAL WEATHER PREDICTION (NWP) / RADAR SERVER
- AGENSI REMOTE SENSING MALAYSIA UNMANED AERIAL VEHICLE (UAV) IMAGES

PROCESS
- FLOOD FORECASTING MODEL
- FORECAST DATA CENTRE (FDC)
- FLOOD WARNING AND DISSEMINATION SYSTEM

STAKEHOLDER
- AGENCY
 - JPS STATE
 - JMM
 - Agensi Pengurusan Bencana Negara
 - Polis DiRaja Malaysia
- PUBLIC / MEDIA
 - Television
 - Radio
 - WEB/Mobile Apps/
 - Facebook / Twitter
 - Short Messaging System
 - Open Data
 - Siren
 - Warning Board
Debris and Mudflow Warning System in Cameron Highlands, Pahang

Prepared by Dr. Norlida Md Dom (norlidamd@water.gov.my), Humid Tropic Center Kuala Lumpur (HTC)

Debris and Mudflow Warning System (DMFWS)

Introduction

Department of Irrigation and Drainage (DID) is a member of National Disaster Committee Malaysia and is responsible for providing flood forecasting and warning service to the public including on-line rainfall and river levels information.

This webpage is generated from the study of the development of debris and mudflow prediction and warning system (DMFWS) based on existing rainfall data in Cameron Highlands following the guidelines and methodology provided during the Typhoon Committee Hydrology Component Workshop.

The main objectives of the DMFWS is to provide advance warning to the public and relevant agencies for disaster relief on the possibility of occurrence of an impending landslide or mudflow in high-risk and sensitive areas, like cut shapes of highway and recreation areas. The DMFWS is able to alert the appropriate agencies for disaster relief.

This is an opportunity for DID to expand its scope of warning in the possibility of debris movement. A successful model hopefully lead DID as one of local Government Agency that can provide Operational Debris Flow Warning System in Malaysia.
Corporate Social Responsibility (CSR) – ‘Water For Life’

Water Supply For Underprivileged Community Kg Langkor Sungai Siput (U) Perak

USM TRANSFERS KNOWLEDGE TO 43 ‘ORANG ASLI’ FAMILIES AT KAMPUNG LANGKOR

SUNGAI SIPUT, 1 February 2016 – The ‘orang asli’ population in Kampung Langkor, a village in northern Sungai Siput, Perak could not hide their feelings of gratitude and was thankful when receiving a visit by a delegation from Universiti Sains Malaysia (USM) recently.
In seismic risk mitigation policies, fragility functions of existing buildings play a fundamental role. In this study, a procedure to evaluate the analytical fragility curves for Moment Resisting Frame of Reinforced Concrete buildings will be presented. The design of the selected building typologies will performed according to the codes at the time of construction using force-based methods and the state of the practice at the time of construction. A different building classes will be identified, considering different ages, number of storeys, infill panels, plan dimensions, beam stiffness, and concrete strength.

The investigated buildings can be considered low-engineered buildings, using no seismic codes or current seismic codes. The seismic capacity of the selected models representing the existing RC buildings will be evaluated through non-linear dynamic simulations. Seismic response has been analyzed, considering various peak and integral intensity measures and various response parameters, such as ductility demands and drift ratio. A new relationship among structural performance, damage levels and interstorey drift ratios for each studied type will be investigated, which is calibrated using the damage levels. It is important to highlight that in this study, the fragility curve for each type of buildings based on different building classes will be performed to evaluate the seismic vulnerability of the particular buildings.
Landslide hazard map is needed in order to determine future probability of landslides in Malaysia. The aim of this study is to understand external factors such as rainfall and earthquakes that are usually the main reasons of failure in slopes and tries to connect the possibility of landslide occurrence with regards to rainfall and earthquakes. At the end of this study, critical threshold of rainfall intensity (with relation to groundwater level) and Peak Ground Acceleration (PGA) can be determined. These results will also help to develop future early warning system for Kundasang and Ranau, Sabah.

Using results from combining several probabilistic methods and soil strength parameters to check on the stability of slopes are relatively new especially in Malaysia. This study will provide necessary information needed to plan for future response with regards to slope stability as well as future planning on slope monitoring and risk reduction.

The actual results at the end of the study are aimed towards the assessment of:

- Combination of probabilistic analyses of earthquake and rainfall on Kundasang and Ranau, Sabah.
- Effect of earthquake and rainfall on Kundasang and Ranau, Sabah slopes.
- Determination of critical threshold of rainfall intensity and PGA that can trigger landslide events in Kundasang and Ranau, Sabah.
The buildings in Malaysia are not designed to the resistance of seismic loading. The vulnerability of non-seismic designed buildings caused by far field earthquakes (Sumatra and Philippines) or local earthquakes (Sabah and Bukit Tinggi) may significantly increase due to the low performance of joint ductility. The investigation of on-site dynamic performance and seismic capacity of critical buildings will be performed to avoid any losses in future, especially the low to medium rise buildings that are more susceptible to vibration cause by near field earthquakes. The on-site measurement of soil dynamic response and on-site measurement of building dynamic response will be performed to evaluate the actual dynamic behaviour of site and seismic performance of the building. The seismic demand and capacity analysis of the buildings will be performed.

This study will developed (i) an empirical relationship of fundamental period and height of building; (ii) an empirical relationship of damping and mode shape of building and (iii) the seismic demand and capacity of the building. These results can be incorporated to the technical guideline for the earthquake resistant design of buildings. This study will benefit the construction industry in predicting the vulnerability index of the existing non-seismic designed buildings subjected to most probable earthquake (2% in 50 years). Hence, retrofitting decision can be made if necessary. In addition, the procedure of designing and evaluation employed in the project will be useful for design engineer in providing a safe design especially for high-rise building to reduce the urbanization risk due to pre- and post-earthquake events for sustainability of public facilities in Malaysia.
The occurrence of 2015 Ranau earthquake has attracted the attention of public and professionals on the safety of non-seismically designed buildings under earthquake ground motions. Due to the lack of research and information available for the dynamic characteristics of the site in Ranau, microtremor observation is one of the feasible techniques that could be applied. This technique requires less manpower, cost and time consumption. This method involves the measurement of low amplitude of ambient vibration caused by human-made or atmospheric disturbance. It has been proven that this technique is able to predict the behaviour of ground due to earthquake.

Earthquake resistant design is essential for buildings in order to withstand the earthquake force. Fundamental period and damping ratio are dynamic properties of building that play important roles in dynamic analysis. Microtremor observation will be adopted in this research in order to record the motion of buildings. Nakamura’s method will be adopted to determine the fundamental period of buildings. The damping ratio will be estimated based on half power bandwidth method. The obtained findings will help in the analysis of building in Ranau subjected to earthquake loading.
Sungai Kelantan catchment suffered a devastating flood disaster in late December 2014 and this led to destructive damages with 45,467 people evacuated in Kelantan (26th Dec 2014). The chronology of the extreme flood started with torrential rains on the 17th of December, 2014 which led to flash flooding that forced 3390 people in Kuala Krai, Kelantan to be evacuated from their homes. Continuous heavy rain for over three days (from the 21st to the 23rd of December, 2014) set a rainfall record of 1295 mm, equivalent to the amount of rain usually seen in a span of 64 days. This paper describes the assessment made on the potential of Rainfall-Runoff-Inundation (RRI) model to simulate the flood inundation for the Sungai Kelantan catchment based on two-dimensional diffusion wave equations. The RRI model was used to develop the actual extent of the December 2014 flood for Kuala Kerai, Kelantan. A simulation for the whole month of December 2014 was also carried out using the RRI model to capture initial catchment conditions. Initial simulation without rivers cross sectional information was found to lead to inaccurate inundation analysis. The results however were found to be improved with a good agreement when the cross sectional of Sungai Galas and Sungai Lebir were included as model input. The RRI model was also found to simulate the observed flood inundation by remote sensing map for the 26th December 2014 flood well. The monthly simulated result showed the two peaks discharges and flood inundation for 19th December and 25th December 2014 to be similar to the ones reported by DID 2014 Flood Report. These findings led to the conclusion that the RRI model is useful as a flood analysis tool and provider on related flood inundation information.
Universiti Sains Malaysia is requested by Drainage and Irrigation Department of Perak to study on the sustainable sand removal capacity of Sungai Perak at Bota Kanan, Perak.

OBJECTIVES OF THE STUDY
The objective of the study are :
a. to determine the potential volume of minable sand on the Sungai Perak, at Bota Kanan
b. to evaluate whether the proposed site is economically viable and environmentally suitable.
This study includes field examinations consist of geological/geotechnical/geophysical explorations, river discharge measurement and grab sediment sampling which is integrated their application to meet the objectives.
The government of Brunei Darussalam awarded the contract to SWEE Sendirian Berhad to upgrade the existing Mengkubau Dam reservoir storage capacity in order to meet the increasing demand of Brunei Muara area community.

To upgrade the dams’ reservoir capacity, the modeller designed the dam crest to be raised from 31.00m BSD to 34.7m BSD. This enables the FLS to be increased to 32.9m BSD from the existing FSL of 28.7m BSD. To limit the flood rising level, a special Labyrinth type spillway will be constructed and it will efficiently convey the excess floodwater downstream, through the existing chute.

Hydraulic modelling is the science of creating a model of an existing civil structure considering all possible factors in order to replicate the structure whilst considering the cost. The model is then used by the researcher to study the natural behaviour of the water towards the hydraulic structure as a basis to predict any possible occurrences. The researcher is, in a very short time, able to test various scenarios without the risk of life or equipment. The data collected from these tests are then used to further determine the feasibility of a site and to ensure proper structures/systems are designed for the project.
The **Sungai Sarawak Regulation Scheme**
is a major civil engineering project in Kuching Sarawak, Malaysia. This project incorporates a 3-in-1 infrastructure (barrage, shiploc and bridge) which is the first of its kind in SEA.

The purpose of the physical hydraulic and numerical models to achieve the following objectives:-

1. To determine the scouring effects on the down stream of the barrage in the physical model
2. To propose a mitigation concept to reduce the effects of scouring and upstream flooding
3. To report dynamic response of the original and modified the scouring downstream of the barrage.
The purpose of the physical hydraulic and numerical models to achieve the following objectives:-

1. To establish the correlation between discharge and gate opening of Sultan Abu Bakar (SAB) Dam
2. To establish the correlation between discharge and downstream water level of Sultan Abu Bakar (SAB) Dam for the distance of at least 4 km
3. To report on the structural integrity and dynamic response of the original and modified tilting gate.
Knowledge of precipitation can lead to other research such as **rainfall forecasting, flood forecasting, flood mitigation and others.**

Research on rainfall forecasting can be a **good start** before the implementation of flood forecasting and warning.

Most of flood forecasting and warning systems (FWS) are totally depending on the **accuracy of rainfall forecasting**

<table>
<thead>
<tr>
<th>Z = 10R^{1.6}</th>
<th>Z = 30R^{1.6}</th>
<th>Z = 40R^{1.6}</th>
<th>Z = 50R^{1.6}</th>
<th>Z = 200R^{1.6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>-26.84</td>
<td>-1.52</td>
<td>2.69</td>
<td>5.48</td>
</tr>
<tr>
<td>MAE</td>
<td>27.21</td>
<td>5.43</td>
<td>3.75</td>
<td>5.73</td>
</tr>
<tr>
<td>RMSE</td>
<td>31.40</td>
<td>7.24</td>
<td>7.06</td>
<td>8.51</td>
</tr>
<tr>
<td>BIAS</td>
<td>2.11</td>
<td>1.06</td>
<td>0.89</td>
<td>0.77</td>
</tr>
<tr>
<td>R^2</td>
<td>0.679</td>
<td>0.679</td>
<td>0.679</td>
<td>0.678</td>
</tr>
<tr>
<td>r</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
</tbody>
</table>
SIMULATION OF EVACUATION PROCESS AGAINST TSUNAMI DISASTER IN MALAYSIA

Case studies: The Miami Beach, Penang by Dr Muhammad Salleh Abustan (UTHM) and Dr Noorhazlinda Abd Rahman (USM)

- The Miami Beach:
 - Popular tourist attraction;
 - Experienced tsunami attack (2004);
 - Record more than 5 fatalities;
 - Topography different from other beaches - crop rocks around the beach.

- Motives of the study:
 - To plan appropriate evacuation routes and evacuation place;
 - To obtain quick and safe evacuation.

- Scope of study:
 - Used CBS-DE model, developed at Laboratory of Hitoshi Gotoh in the year 2004.
 - Sim-1: current situation with one evacuation place
 - Sim-2: improvement with two evacuation place
THANK YOU
TERIMA KASIH

ceismail@usm.my
ismail_abustan@yahoo.com