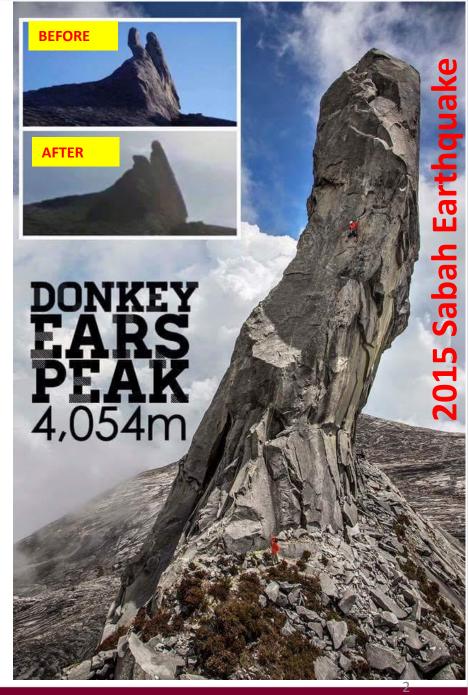


GEOHAZARD RISK ASSESSMENT IN A TECTONICALLY ACTIVE REGION IN MALAYSIA

Khamarrul Azahari Razak 1,2


¹UTM RAZAK School of Engineering and Advanced Technology, ²Disaster Preparedness and Prevention Center, Malaysia-Japan International Institute of Technology Universiti Teknologi Malaysia (UTM) Kuala Lumpur

@ khamarrul.kl@utm.my

CONTENTS

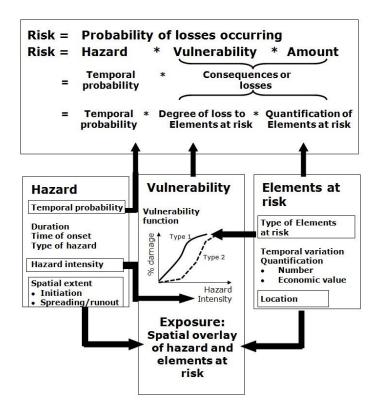
- 1. Current Issues & Challenges
- 2. Sabah Earthquake in June 2015
- 3. Cascading hazards
- 4. Multi-Hazard Risk Assessment
- 5. Future works and collaboration

A complex geological hazard and risk assessment

> requires a multi-hazard approach, as different types of disaster may occur, each with different characteristics and causal factors, and with different spatial, temporal and size probabilities.

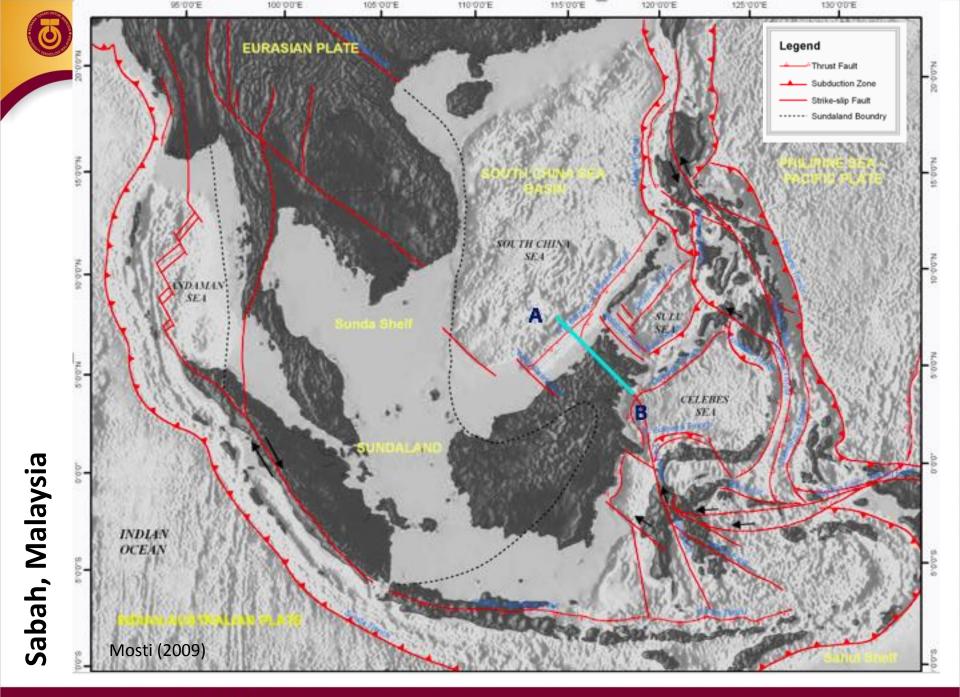
RISK is a multi-disciplinary SPATIAL problem

innovative • entrepreneurial • global

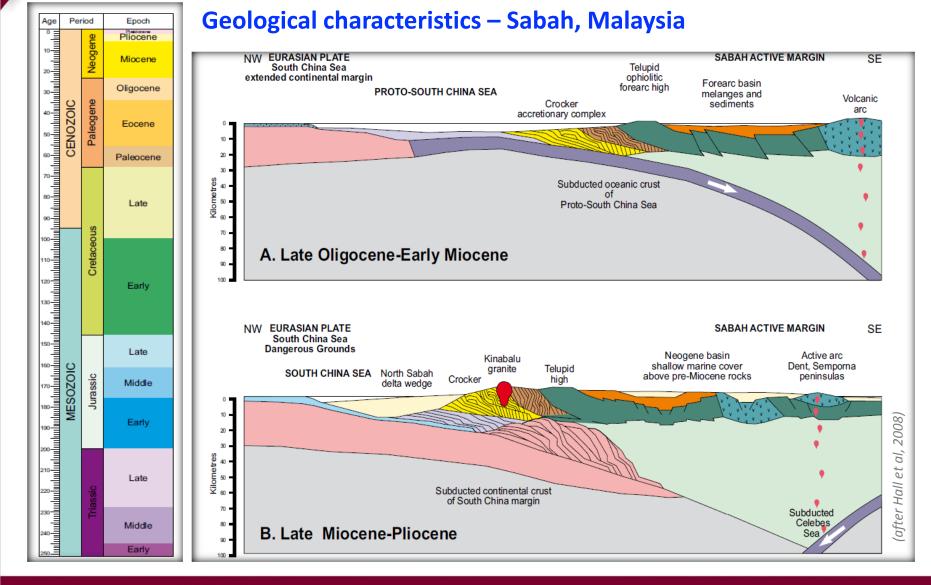

@ khamarrul.kl@utm.my

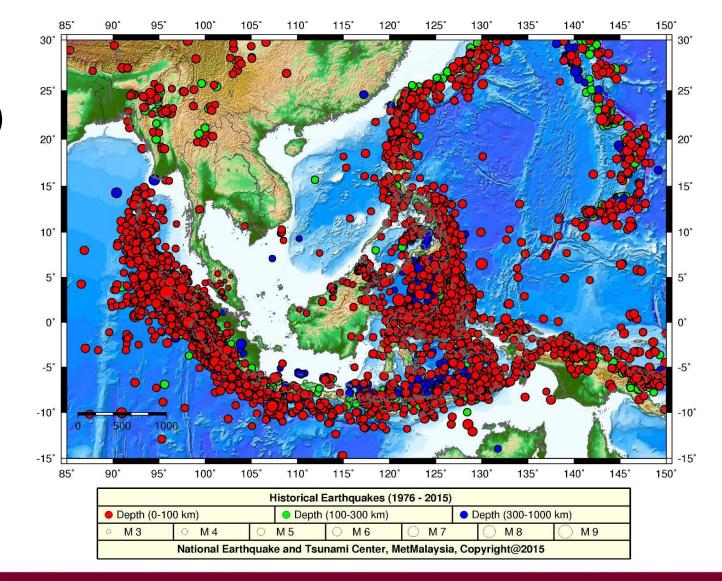
www.utm.my

UNIVERSITI TEKNOLOGI MALAVSIA


UNESCO-JASTIP Joint Symposium Intra-Regional Water Security and Disaster Management The 3rd Symposium on JASTIP Disaster Prevention International Cooperation Research 16 November 2017 @ Seda Hotel Vertis North, Quezon City, Manila, the Philippines

RISK ASSESSMENT: CHALLENGES


Government of Malaysia


UNIVERSITI TEKNOLOGI MALAVSIA

UNESCO-JASTIP Joint Symposium Intra-Regional Water Security and Disaster Management The 3rd Symposium on JASTIP Disaster Prevention International Cooperation Research 16 November 2017 @ Seda Hotel Vertis North, Quezon City, Manila, the Philippines

innovative • entrepreneurial • global

SEISMIC ACTIVITIES (1976 – 2015)

Earthquake | Sabah | 05 June 2015

Malaysia earthquake: 11 dead and eight missing after 5.9 magnitude quake hits Mount Kinabalu

News > World > Asia

The quake struck Malaysia's highest peak on Friday

Australian climber stranded after Malaysia earthquake slams rescue effort

An Australian climber has savaged Malaysian authorities following Borneo earthquake that killed 13 people when it jolted south-east Asia's highest peak

📫 Hikers trapped on Mount Kinabalu, Sabah state, Malaysia on Friday after a 5.9-magnitude earthquake. One climber says they waited nine hours for help before walking out by themselves as tremors continued. Photograph: Xinhua/Rex Shutterstoc

The SINDEPENDENT More bodies found on Malaysia mountain as Summy quake toll hits 13

By ASSOCIATED PRESS

PUBLISHED: 12:28 GMT, 6 June 2015 | UPDATED: 12:28 GMT, 6 June 2015

KUALA LUMPUR, Malaysia (AP) — Rescuers recovered the bodies of 11 more climbers from Malaysia's highest peak on Saturday, a day after it was struck by a strong earthquake, bringing the total number of dead to 13.

Six people remained missing on 4,095-meter (13,435-foot) -high Mount Kinabalu in eastern Sabah state on Borneo, where a magnitude-5.9 earthquake on Friday sent rocks and boulders raining down the trekking routes, trapping dozens of climbers

'This is a very sad day for Kinabalu," said Sabah's tourism minister, Masidi Manjun.

5.9 magnitude earthquake hits Sabah (Updated)

Posted on 5 June 2015 - 09:36am Last updated on 6 June 2015 - 09:38am

nelicopter leaves Kundasang, Malaysia for Mount Kinabalu to recover the bodies of cl day recovered the bodies of several more climbers from ruck by a strong earthquake. (Munehiro Yamaoka/Kyo

d on Malaysia mountain as quake



Strong 6.0-magnitude guake strikes Malaysia's Sabah

A strong 6.0-magnitude earthquake rocked the state of Sab Valaysia's Borneo island early Friday, say US geologists sa

POSTED: 05 Jun 2015 08:08 UPDATED: 05 Jun 2015 10:57

File picture of a seismograph reading. (Photo: AFP),

IOME AP TELANGANA INDIA WORLD NRI BUSINESS SPORTS CRIME LIF

Malaysia's Sabah state jolted by earthquake of 5.9 intensity 2 Like (0 WTweet (0 in Share

itial reports from the Malaysian Meteorological Services ent said the quake struck 16 km northwest of Rana

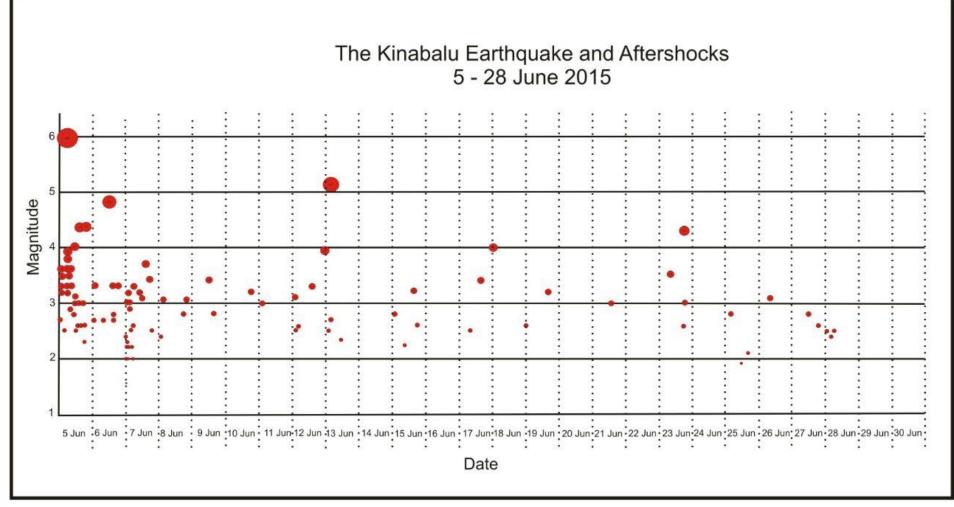
Local residents take shelters at the open air in Ranau, Sabah state, Malavsia, June 5, 2015. A 5.9 magnitude earthquake has occurred in Malaysia's Sabah state on North Borneo early Friday morning, authorities said. (Xinhua Photo)

www.utm.my

innovative • entrepreneurial • global

2015 Sabah earthquake

	Date	5 June 2015
	Origin time	07:15:43 MST (UTC+08:00) ^[1]
	Duration	30 seconds
	Magnitude	6.0 (M _w) (USGS) 5.9 (M _w) (MetMalaysia)
	Depth	10 km (6.2 mi) ^[1]
uake	Epicenter	🔍 5.980°N 116.525°E ^[1]
https://en.wikipedia.org/wiki/2015_Sabah_earthquake	Туре	Normal
	Areas affected	West Coast & Interior Division (Mount Kinabalu area), Sabah, East Malaysia
	Total damage	Building and infrastructure damage, landslides & geological changes
edia.org	Max. intensity	VII (Very Strong)
ikip€	Landslides	Yes
en.w	Aftershocks	90 (As of 23 June 2015) ^[2]
https://	Casualties	18 deaths 11 wounded


DONKEY FARS PEAK 4,054m

innovative • entrepreneurial • global

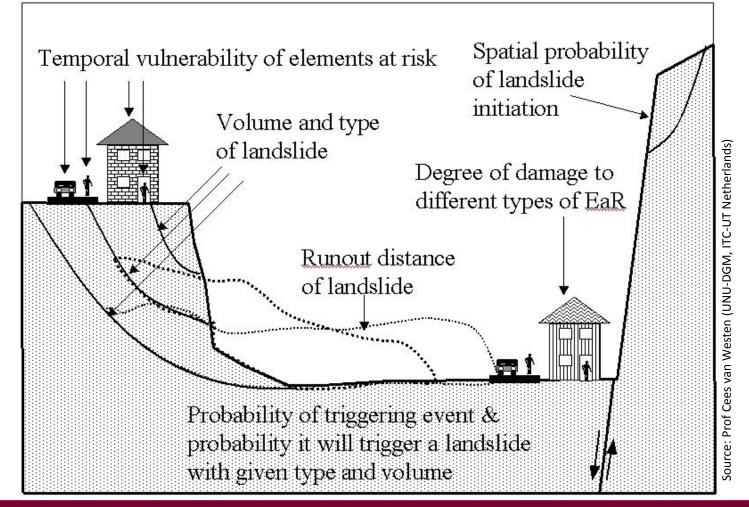
www.utm.my

EARTHQUAKE AND AFTERSHOCKS

Compiled by Alexander Yan

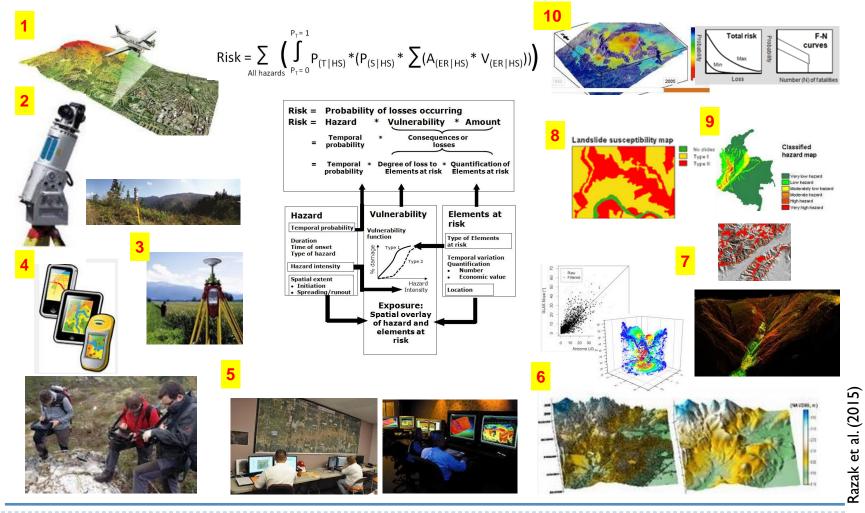
Data Source: MetMalaysia

QUANTITATIVE RISK ASSESSMENT

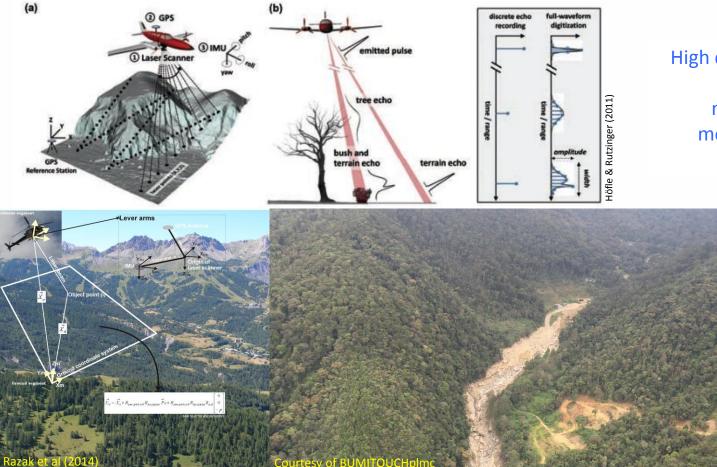

$$\operatorname{Risk} = \sum_{\operatorname{All hazards}} \left(\int_{P_{T}=0}^{P_{T}=1} P_{(T|HS)} * (P_{(S|HS)} * \sum (A_{(ER|HS)} * V_{(ER|HS)})) \right)$$

In which

- P_(T|HS) = the temporal probability of a certain hazard scenario (HS);
 P_(S|HS) = the spatial probability that a particular pixel in the susceptible areas is affected given a certain hazard scenario;
- A_(ER|HS) = the quantification of the amount of exposed elements at risk, given a certain hazard scenario (e.g. expressed as the number or economic values); and
- V_(ER|HS) = the vulnerability of elements at risk given the hazard intensity under the specific hazard scenario

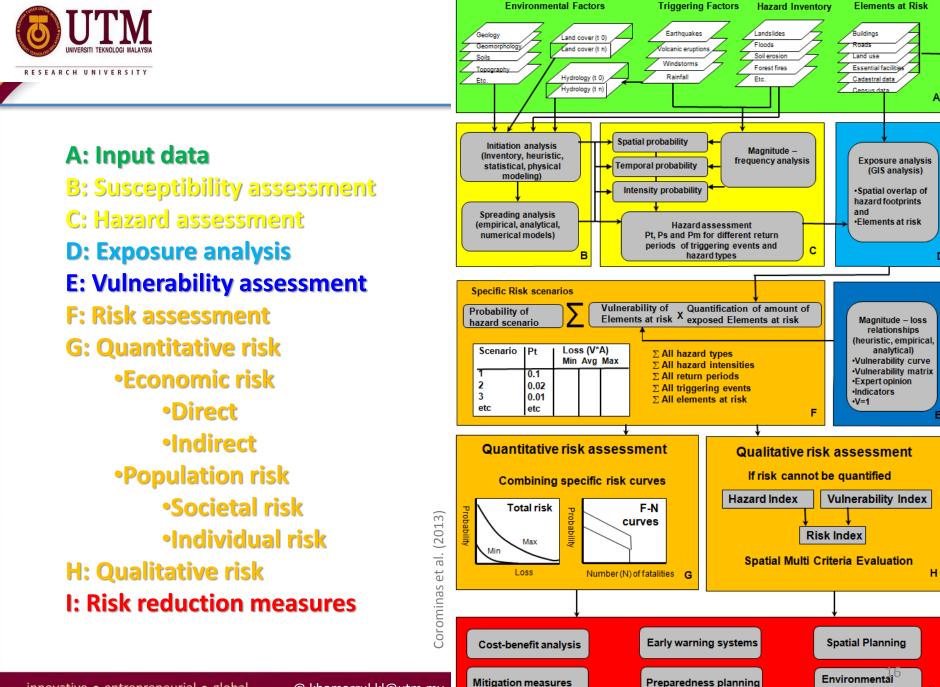


Landslides: Issues and Problems


National Initiative - Landslide Hazard and Risk Mapping Project - 2014-2016

Airborne LIDAR; 2. Terrestrial LIDAR, 3. GPS Survey, 4. Mobile GIS Field Mapping, 5. Data Processing, 6. LIDAR-Landslide Processing,
 Landslide Inventory Mapping, 8. Landslide susceptibility Analysis, 9. Landslide Hazard Assessment, 10. Landslide Risk Assessment

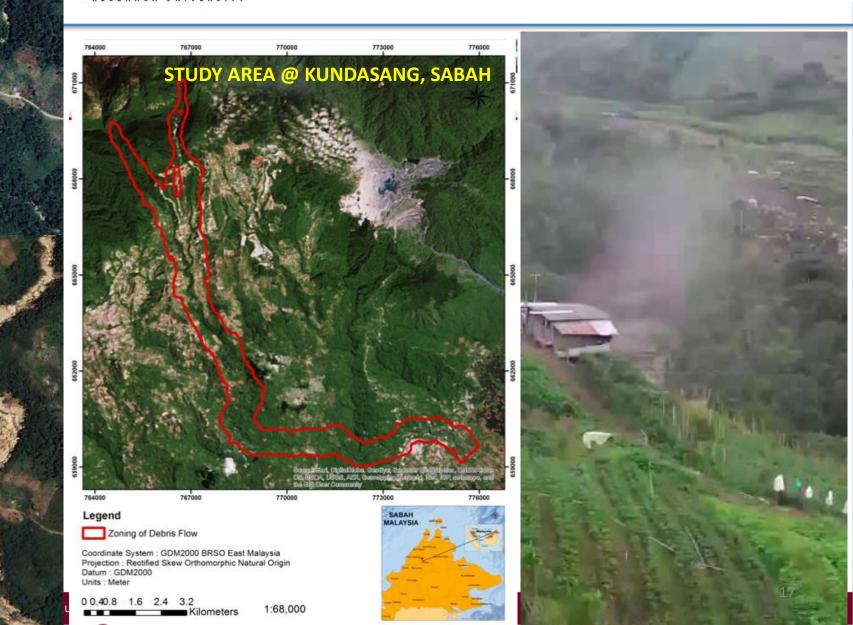
Topographic Laser Scanning System (LiDAR), most advanced geospatial tech to mapping, characterizing, and assessing landslide processes



High density airborne LIDAR is a powerful tool for mapping, monitoring & modelling of the disaster prone area

> New capability of modern LiDAR system for recording full-waveform spatial data

innovative • entrepreneurial • global


Impact Assessment

7 April 2015

20 July 2015

UNESCO-JASTIP Joint Symposium The 3rd Symposium on JASTIP Disaster Prevention Int. Research 16 November 2017 @ Manila, the Philippines

Sediment-based disaster

damage to infrastructures (houses, bridges, schools, hotels, etc.), hot-springs, water
 drainage pipe (supply disruption) and ecological- (aquatic habitat) & socio-economic impact)

@ Kundasang, Sabah (June 2015)

AGU Blogosphere

ABOUT

BLOGS

ABOUT DAVE

A community of Earth and space science blogs

this blog.

Connect with Dave:

Enter Keyword(s)

search

Sign In

ABOUT DAVE

Dave Petley is the Pro-Vice-Chancellor (Research and Innovation) at the University of Sheffield in the United Kingdom. His blog provides a

commentary on landslide events occurring

22 JUNE 2015

Malaysia

HOME

HOME

Landslide-induced sediment production Sabah earthquake in Malaysia

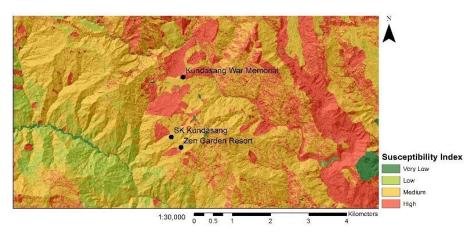
CONTACT ME

Home - Earthquake-induced landslide - Landslide-induced sediment production after the Sabah earthquake in

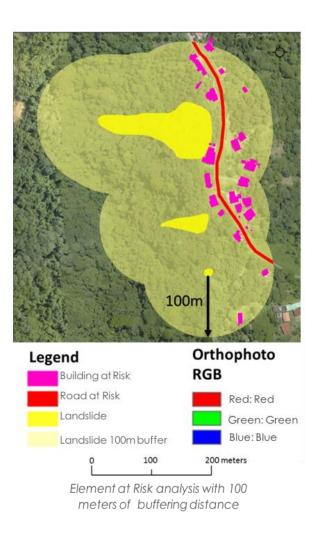
Posted by Dave Petley

"...Notable here is the amount of timber in the river – to me this suggests that there must have been quite extensive landslides in the forested areas on the lower slopes of the mountain. I have not seen detailed reports or images of these landslides."


G+1 3


THE LANDSLIDE BLOG

LANDSLIDE SUSCEPTIBILITY AND HAZARD


Indicating Likeliness and Severity of Landslide

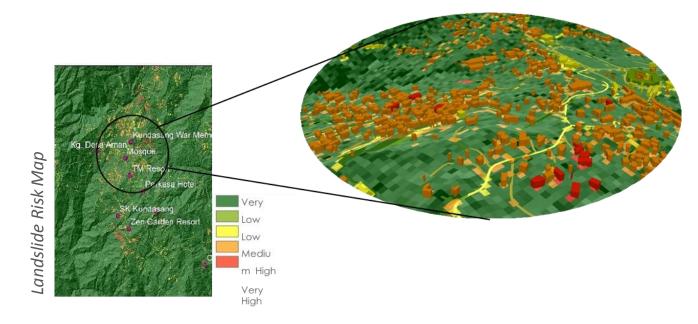
Landslide Susceptibility Map

Tune of elemente at

ELEMENTS AT RISK FOR MULTI-HAZARD AND DISASTER **RISK**

innovative • entrepreneurial • global

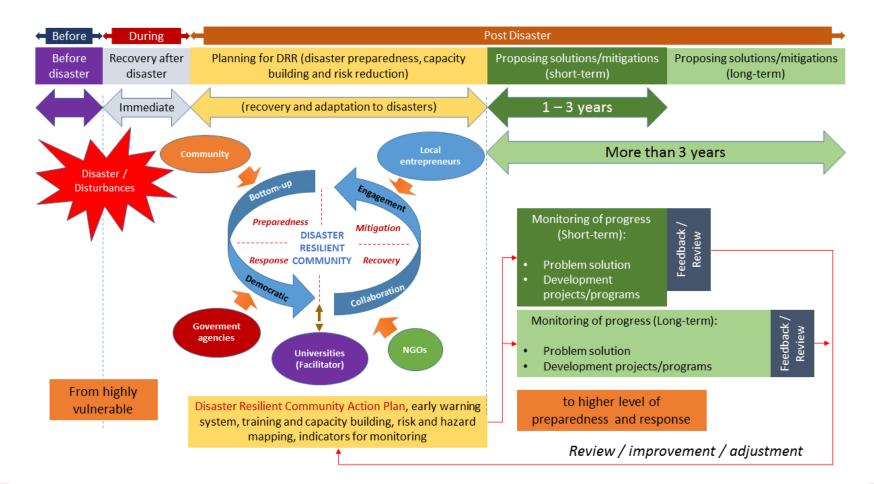
	Type of elements at				
N	risk	Small	Medium	Large	Detailed
IOLOGI MALAYSIA	Buildings	By Municipality • Nr. buildings	Mapping units Predominant land use Nr. buildings 	Building footprints Generalized use Height Building types 	Building footprints Detailed use Height Building types Construction type Quality / Age Foundation
MENTS	Transportation networks	General location of transportation networks	Road & railway networks, with general traffic density information	All transportation networks with detailed classification, including viaducts etc. & traffic data	All transportation networks with detailed engineering works & detailed dynamic traffic data
RISK MULTI-	Lifelines	Main powerlines	Only main networks Water supply Electricity 	Detailed networks: • Water supply • Waste water • Electricity • Communication • Gas	Detailed networks and related facilities: • Water supply • Waste water • Electricity • Communication • Gas
ARD AND SASTER	Essential facilities	By Municipality • Number of essential facilities	As points • General characterization • Buildings as groups	Individual building footprints • Normal characterization • Buildings as groups	Individual building footprints • Detailed characterization • Each building separately
RISK	Population data	By Municipality • Population density • Gender • Age	By ward Population density Gender Age	By Mapping unit Population density Daytime/Nighttime Gender Age	People per building • Daytime/Nighttime • Gender • Age • Education
	Agriculture data	By Municipality • Crop types • Yield information	By homogeneous unit, • Crop types • Yield information	By cadastral parcel Crop types Crop rotation Yield information Agricultural buildings	By cadastral parcel, for a given period of the year • Crop types • Crop rotation & time • Yield information
Van Westen et al. (2015)	Economic data	By region • Economic production • Import / export • Type of economic activities	By Municipality • Economic production • Import / export • Type of economic activities	By Mapping unit • Employment rate • Socio-economic level • Main income types Plus larger scale data	By building • Employment • Income • Type of business Plus larger scale data
trepreneurial • global	Ecological data	Natural protected areas with international approval	Natural protected area with national relevance	General flora and fauna data per cadastral parcel.	Detailed flora and fauna data per cadastral parcel


Scale of analysis

Risk is technically computed based on three contributing factors known as:

1) the probability of a landslide occuring at a given magnitude (Hazard); 2) the exposure level; and

3) the expected degree of loss resulting from the specified landslide magnitude (Vulnerability).

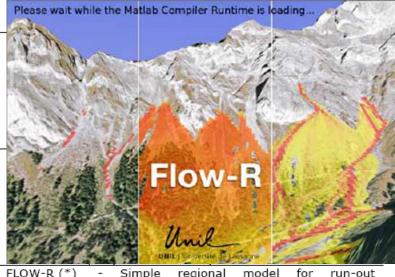


Challenges: Historical inventory and archived data to analyze triggering factors (rainfall & seismic), understand vulnerability variation and scientifically analyze a possible risk

TOWARDS A RESILIENT COMMUNITY

STAKEHOLDERS, COMMUNITY AND CAPACITY BUILDING

Scheme of the run-out methods type and their computation dimensions

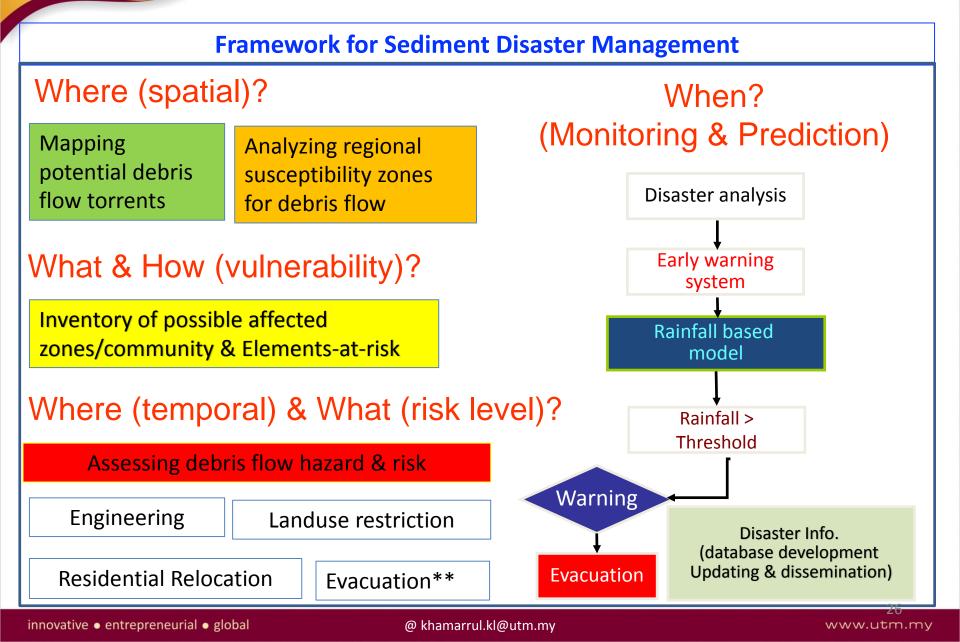

.. utilizing modern geospatial data and others in characterizing and generating data input for run-out assessment?

<u> </u>	· - (· · · · · · · · · · · · · · · · · · ·	·	
Dimension of calculations	Type of methods	Inputs	Outputs	
	Empirical methods: - Heuristic - Angle of reach - Mass-change	 Volume estimation Topographic profiles Image interpretation Geomorphologic studies 	- Maximum run-out - Area of deposit - Flow depth	
1-D	Analytical methods (point mass models)	- Rheological parameters - Topographic profile	- Maximum run-out - Velocity	
	Numerical methods	- Rheological parameters - Topographic profile - Volume	 Maximum run-out Velocity Impact pressures Flow depth 	
2-D	Flow routing methods	- DEM (Digital elevation model)	 Pxy= probability of each cell to be affected by a flow Flow trajectories and extension of deposits 	
	Numerical methods	- DEM - Rheological parameters	- Extension of deposits - Velocity	
Quan Luna et al (2012)		- Volume	- Flow depth - Impact pressures	

Model	Reasons model	for	selecting	this	parti	icul	ar
MacaMay2D	0.000		madal i		a na ta al		-

- Open source model implemented in MassMov2D dynamic GIS (PCRaster).
 - Possibility to use different rheologies.
 - Models entrainment.
 - Outputs of the results can be obtained in forms of maps, graphs or text files.
 - User friendly.
 - Code can be modified to the user needs.
 - Can run batch files
- Regional scale empirical runout model

Based on travel angles



196 - A 197 5 May 14			
FLOW-R (*)	- Simple regional model for run-out		
	assessment.		
	- Use the energy-line approach.		
1-D	- Models entrainment with a concept based		
entrainment	on limit equilibrium and the generation of		
model (*)	excess pore water pressure through		
	undrained loading of the bed material.		
AschFlow	-Simplified regional run-out model.		
(*)	 Based on rheological parameters. 		
	- Different rheologies can be selected.		

- Models debris flow velocity and thickness.

innovative • entrepreneurial • global

UTM RAZAK School of Engineering and Advanced Technology Disaster Preparedness and Prevention Center, MJIIT Universiti Teknologi Malaysia (UTM) Kuala Lumpur

An Integrated Research Framework "Disaster Resilience Model"

Where R: Resilience; D: Damage = f (H,E,V); A: Human Activities; T: Time

where D = f(H,E,V)

Prevention

Recovery

Future work and collaboration

Quantifying geomorphological & fluvial processes and activities Mountain geohazards, sediment-related disaster & flood risk Regional seismotectonic activity and climate risk assessment

Multihazard and disaster risk assessment (space technology based; community-based); Monitoring & Early warning system

Mainstreaming DRR into the future development planning

Transdisciplinary approach for building resilient city and society

THANK YOU FOR YOUR ATTENTION

Disaster Preparedness and Prevention Center Malaysia-Japan International Institute of Technology Universiti Teknologi Malaysia (UTM) Kuala Lumpur

Geospatial Intelligence Research Initiative Cascading GeoHazards Research Initiative UTM RAZAK School of Engineering and Advanced Technology Universiti Teknologi Malaysia (UTM) Kuala Lumpur 54100 Jalan Sultan Yahya Petra, Kuala Lumpur

Khamarrul Azahari Razak, PhD

UTM RAZAK School of Engineering and Advanced Technology Universiti Teknologi Malaysia 54100 Jalan Sultan Yahya Petra Kuala Lumpur Tel: +6019-3649495 Email: khamarrul.kl@utm.my; khamarrul@gmail.com Web: http://www.razakschool.utm.my/khamarrul

Visiting address:-

Room no. 32, Level 6, Malaysia-Japan International Institute of Technology (MJIIT) Universiti Teknologi Malaysia Jalan Sultan Yahya Petra, Kuala Lumpur

MASTER OF DISASTER RISK MANAGEMENT (MDRM)

MDRM @ MJIIT UTM KL is the first Master's degree in disaster risk management in Malaysia that is taught by both Japanese and Malaysian DRM experts.

Facilitating Disaster Risk Reduction in Asia through Training – Research – Field Practice

21

http://mjiit.utm.my/dppc/

CERTIFIED PROFESSIONAL TRAINING IN DISASTER RISK MANAGEMENT

Nurturing Values, Empowering Minds

COURSE NAME	DATES	LECTURER'S NAME
Integrated Disaster Management	25 September - 6 October 2017	Prof. Kuniyoshi Takeuchi (ICHARM)
Disaster Data Management and Forecasting	16 - 27 October 2017	Dr. Koji Dairaku (NIED)
Emergency Response Planning and Communication	20 November - 1 December 2017	Prof. Michinori Hatayama (Kyoto University)
Recovery and Reconstruction Management	11 - 22 December 2017	Prof. Norio Maki (Kyoto University)
Control Measures and Mitigation Planning	3 - 17 January 2018	Prof. Kenichi Tsukahara (Kyushu University)
Healthcare in Emergencies and Rehabilitation	12 - 23 March 2018	Prof. Yukiko Wagatsuma (Tsukuba University)
Flood Forecasting and Hazard Mapping	16 - 27 April 2018	Prof. Shinji Egashira (ICHARM) & Prof. Koji Asai (Yamaguchi University)
Disaster Education and Preparedness for Social Resilience	7 - 18 May 2018	Prof. Fusanori Miura (Yamaguchi University) & Prof. Hitoshi Nakamura, (Shibaura Institute of Technology)
Geohazard Information for Disaster Risk Assessment	2 - 13 July 2018	Prof. Naoki Sakai (NIED) & Prof. Masahiro Chigira (Kyoto University)