UNESCO-JASTIP Joint Symposium on Intra-Regional Water Security and Disaster Management

United Nations Educational, Scientific and Cultural Organization

International Hydrological Programme

United Nations - From Educational, Scientific and - the People Cultural Organization - of Japan

EVALUATION ON THE IMPACTS OF UPSTREAM DAM DEVELOPMENT ON SALINITY INTRUSION INTO VIETNAMESE MEKONG DELTA

TRUNG LA¹, MAI NGUYEN², SAMEH KANTOUSH³, TETSUYA SUMI³, BINH DOAN³

¹Research Management Department, Vietnamese-German University
²Faculty of Civil Engineering, Thuyloi University, Southern Campus
³Water Resources Research Center, Disaster Prevention Research Institute, Kyoto University

UNESCO-JASTIP Joint Symposium on Intra-Regional Water Security and Disaster Management

MAINSTREAM AND TRIBUTARY DAMS

THE OVERALL OBJECTIVES OF THE PROJECT

Map of the installed equipment

Turbidity meter Salinity meter

2. Specific objectives of the study

- To assess the current status of the drought and salinity intrusion in 2016
- 2. To determine the correlation between the discharge to the delta and salinity concentration at some monitoring stations
- 3. To elucidate the impact of dam operation on salinity concentration and intrusion length by numerical simulations

3. Results and discussions

4	5	3	2	6	1
Manwan	Dachaoshan	Jinghong	Xiaowan	Gongguoqiao	Nuozhadu
.986-1992 670MW_1993 0.92 x10 ⁹ m ³	1996- Nov.2003 1350MW_2001 0.89 x10 ⁹ m ³	2003-Apr.2008 1750MW 1.14 x10 ⁹ m ³	2001-Dec.2010 4200MW 14.56 x10 ⁹ m ³	2008 -Sep.2011 900MW 0.316x10 ⁹ m ³	2006-Mar.2014 5850 MW- Sep.2012 23.7 x10 ⁹ m ³

3.1. The extreme salinity condition in 2016

- The salinity in 2016 is extremely high.
- The maximum salinity concentration (S_{max}) in Jan almost equals to the peaks of other years
- The peak in 2016 shifts from Mar or Apr to Feb

3.2. Change of flow and salinity concentration in the post-cascade dam period

- The flood flow recorded at Kratie station decreases significantly in the period 2009-2011 and 2012-2016. It is due to the appearance of the 2 large reservoirs, Xiaowan (2010 14.56x10⁹m³) and Nuozhadu (2014 23.7x10⁹m³)
- The active volume of the 2 reservoirs accounts for 12.2% of annual mean discharge in many years, from 1990 to 2009.

3.2. Change of flow and salinity concentration in the post-cascade dam period

- In the dry season, the total active storage capacity of two Xiaowan and Nuozhadu dams accounts for 22.2x10⁹m³, about 25% of the average total dry flow (Nov - May) at Kratie station.
- The dam operation strongly affects on water releasing downstream and so as salinity intrusion in Vietnamese Mekong Delta
- The dry flow increases slightly in the middle of dry season

3.2. Change of flow and salinity concentration in the post-cascade dam period

Correlation between discharge to the VMD and max salinity concentration in Jan and Feb, 2016

3.3. Numerical simulation

Comparison of observed and simulated discharge at Chau Doc station

Comparison of observed and simulated salinity concentration at Dai Ngai station

No.	Scenario	S _{max} in Dai Ngai (g/l)	S _{max} in Tra Vinh (g/l)	Salinity intrusion length	
				From Tran De estuary (km)	From Co Chien estuary (km)
1	Baseline (Sc0)	13.8	12.7	57	54
2	Sc1	7.4	8.3	41	47

No.	Scenario
Baseline (Sc0)	Real condition of dry season in 2016
Sc1	Dam operation 1 month earlier

4. Conclusions and recommendation

- The flood flow gets decreasing gradually but becomes considerable in the period of 2009-2011 and 2012-2015 due to the 2 largest dams completion and water storing process.
- The dry flow increases slightly in the mid-dry season. It should be due the dam operation for electric generation.
- The dam operation strongly affects on water releasing downstream and so as salinity intrusion in Vietnamese Mekong Delta
- The salinity intrusion tends to start and reach the peak sooner than previous years
- Information about dam operation and hydrological/meteorological data upstream should be transparent sharing for preparedness downstream, especially in the context of climate change and sea level rise.

FOR YOUR KIND ATTENTION!